
20th Australasian Fluid Mechanics Conference 

Perth, Australia 

5-8 December 2016 

 
Amplitude Responses of a Square Cylinder undergoing Vortex-Induced Vibrations 

in the Laminar Regime 

 
F. Tong

1
, L. Cheng

1, 2
, M. Zhao

3
 and H. An

1 

1
 School of Civil, Environmental and Mining Engineering 

The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia 
2
 State Key Laboratory of Coastal and Offshore Engineering, 

Dalian University of Technology, Dalian, 116024, China 
3
 School of Computing, Engineering and Mathematics,  

University of Western Sydney, Locked Bag 1797, Penrith NSW 2751, Australia 
 

Abstract 

This paper presents a numerical study on the vortex-induced 

vibrations (VIV) of a square cross-section cylinder in the steady 

current. A new branch of high amplitude of responses (HB) was 

observed in the laminar regime, in agreement with a handful 

studies on the topic. In addition, this new branch is found to be 

dependent on several controlling parameters, including the 

approaching direction of the flow relative to the square cylinder, 

the Reynolds number (Re), the mass ratio, as well as the number 

of degree-of-freedom. In the laminar flow regime, it is found this 

new branch only occur when Re is greater than a critical value 

and only when the vibration of the square cylinder is two-degree-

of-freedom. The range of reduced velocity where the HB regime 

occurs strongly depends on above listed parameters. 

Introduction and Motivation 

When a bluff body is placed in a steady flow, the vortex shedding 

leads to periodic fluid forces on the body in both in-line and 

transverse directions of the incoming flow. If the bluff body is 

mounted elastically, these periodic forces may induce large 

amplitude of vibrations to the structure. This phenomenon of 

flow-induced vibration (FIV) is generally termed as vortex-

induced vibration (VIV). From engineering application point of 

view, ocean currents can induce vibrations of offshore pipelines, 

risers and platforms, and wind can trigger vibrations of chimneys, 

skyscrapers and hanging lines. For this reason, extensive studies 

of VIV of circular cylinders has been performed in the past a few 

decades [2, 11].  

Dynamics of response 

Figure 1 shows a sketch of a square cylinder with a side length of 

D and a mass of M placed in fluid flow with a velocity of U∞ and 

density of ρ. The structure is subjected to forces (F) induced by 

the fluid. A coordinate system is defined with the x-direction 

pointing the incoming flow direction. The non-dimensional 

equation of motion of the cylinder is expressed as, 
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where a variable without and with a superscript “*” stands for 

dimensional and non-dimensional values, respectively. Here, t is 

the time, X*=Xi/D is the displacement of the cylinder in either in-

line (x-) and transverse (y-) directions, t*=tU/D is the time, 

M*=M/(ρD2) is the mass, C*=C/(ρU∞D) is the damping 

coefficient, K*=K/(ρU∞
2) is the stiffness and Fi

*=Fi/(ρU∞
2D) is 

force on the cylinder. 

The reduced velocity (Vr) is introduced in the study of VIV, 

which is defined as 
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where / 2nf K/M   is the natural frequency. Also, we will 

use mr = M*, to represent reduced mass.  

The fourth independent parameter of the problem is the Reynolds 

number, Re = U∞D/ν. In the present paper, D is used in this 

definition irrespective of the flow approaching angle α. 

 
Figure 1 Schematic representation of the vortex-induced vibration of a 

square cross-sectional cylinder in steady flow, subjected to variable 

angles of attack and two-degree of freedom.  

Previous studies 

The VIV response of a circular cylinder of low mass-damping 

parameter (mrζ) was classified into four regimes with the increase 

of Vr, namely, the initial excitation branch (IB), the upper branch 

(UB), the lower branch (LB) and the desynchronization [5, 7-9]. 

In the case of high mrζ, only three regimes (i.e., IB, UB and 

desynchronization) present [4]. In each regime, the vibration 

behaves differently in both amplitude and frequency. It is 

worthwhile to mention that although studies leading to the 

classification of response regimes were carried out at 

approximately Re~104, similar vibration responses and flow 

features were reproduced at the laminar regime with two-

dimensional (2-D) numerical simulations [1, 13]. However, the 

UB is not as clear in the laminar flow.  

On the other hand, a bluff body with square cross-section 

represents the simplest setups considering oblique flow angles of 

attack, sharp corners and some afterbody (the part of body after 

separation points) in the study of FIV [15]. The geometry matters 

in the study of FIV and when it comes to a square cylinder, the 

main purpose of much published work usually is to investigate 

x 

y 

U∞ 

α 

c 

c 

D 



the galloping phenomena along with VIV, since it is one of the 

simplest geometries that can gallop. 

One of the most interesting discoveries of recent research on a 

square cylinder undergoing FIV is a new response branch at 

some asymmetric orientations, reported independently in two 

studies, i.e., Nemes et al. [11] in laboratory experiments at 

Re~104 and Zhao et al. [16] in numerical study at Re=100. The 

amplitude of response in the new branch exceeds the ones in the 

traditionally lock-in regime in the UB. Nemes et al. [11] referred 

to this new branch as higher branch (HB). It appears the HB only 

occurs at intermediate alignment angles where no galloping is 

observed, and gradually disappears with increasing flow 

attacking angle when the mechanism of VIV takes over. 

By using two-dimensional (2-D) numerical simulations, this 

paper focus on the dependence of the higher branch on four 

different parameters, including the angles of attack, the degree-

of-freedom, the mass ratio and the Reynolds number. Simulations 

were carried out in the laminar flow regime, where 2-D 

numerical study is sufficient and also the VIV can be studied in 

isolation from galloping for the square cylinder. 

Numerical method 

The motion of the fluid is computed by the two-dimensional 

incompressible Navier–Stokes (NS) equations in a moving 

reference frame attached to the cylinder, which is realized by 

introducing an extra forcing term into the momentum equation 

[12]. The NS equations are solved using Nektar++, an open-

source software framework [3]. A high-order finite element 

method of spectral/hp element method was employed in solving 

the NS equations in conjunction with a second-order time-

splitting scheme and a quadrilateral spectral element-Fourier 

expansion in the spatial discretization [6].  

A square computational domain was employed in the numerical 

simulations. At the left, top and bottom boundaries the velocity 

were set to u = U + ucyl and v = vcyl, where (ucyl, vcyl) are the 

cylinder velocity as a result of VIV in the x- and y-directions, 

respectively. On the cylinder surface, the no-slip condition was 

imposed, while the normal velocity gradient on the right (outlet) 

boundary is set to zero. The pressure was fixed to zero at the 

outlet, and the pressure gradient on the wall and at the far-field 

boundaries was dealt with using higher-order boundary 

conditions [6]. 

Initial tests were aimed at assessing the domain size and mesh 

dependency and the validity of the numerical model were 

carefully performed; after that a domain of xy = 65D40D was 

chosen, which leads to a blockage ratio of 2.5%.  

 
Figure 2 Numerical validation on the vibration amplitudes of a square-

cross-sectional cylinder in steady flow at Re=100, mr = 3 and α = 22.5°.  

The 2DoF VIV of a square cylinder with an attacking angle of 

22.5° is simulated and the amplitudes of displacement in the x-

direction (X-amplitude) and y-direction (Y-amplitude) are 

compared to those from Zhao et al. [16] in Figure 2. It is seen 

that the two sets of data agree well with each other.The Y-

amplitude is consistently larger than X-amplitude across the 

investigated Vr, which is thought due to difference in the 

vibration amplitudes of forces in the two directions. There are 

two regimes of high amplitude responses with the increase of Vr 

from 1 to 25. The maximum amplitudes in both directions at 

higher Vr are greater than those at the low Vr.  

Result Discussion 

A number of simulations were carried out to investigate the 

influences of four parameters to the response of the square 

cylinder in the laminar regime, including angles of attack (α 

[0°, 45°]), degree-of-freedom (1DoF in the y-direction or 2DoF 

in both x- and y-direction), mass ratio (mr [0.1, 30]) and 

Reynolds number (Re  [60, 160]), which will be discussed 

separately.  

 

Figure 3 Vortex-induced-vibration responses of a square cylinder as a 
function of reduced velocity (Vr) and angles of attack (α) at Re = 100 and 

mr= 3. Two regimes of high amplitude of responses are approximately 

marked.  

Influence of α 

A global view of the amplitude of the response in the y-direction 

in the (Vr, α)-space for 2DoF VIV of a square cylinder at Re=100 

and mr = 3 is presented in Figure 3 as a contour map. The 

maximum amplitude locates at (Vr, α) = (8, 45°) at 1.02. A 

prominent feature is that there are two regimes of large amplitude 

in the map. The first regime locates at lower reduced velocity at 

Vr[4, 10] for all angles of attack, while the second at higher 

reduced velocity around Vr [11, 17] for α [12.5°, 27.5°]. 

Following the nomenclatures by Morse and Williamson [10] and 

Nemes et al. [11], these regimes of high-amplitude vibrations are 

named as UB and HB, respectively. Compared with the map of 

amplitude of response in 1DoF study at Re ~ O(103 ~ 104) from 

Nemes et al. [11], no galloping phenomenon is observed in the 

laminar regime. Another major difference to the map at Re ~ 

O(103 ~ 104) is that the HB regime has been shifted to larger 

angles of attack at α [12.5°, 27.5°]. Considering the large 

difference in Re and the number of DoF of the present map to 

that of Nemes et al. [11] though, the similarity in the maps of 

amplitude response is remarkable.  

It is observed in Figure 3 that for any fixed angle of attack, if HB 

occur, the highest Y-amplitude always falls into the HB regime. 

However globally, the maximum Y-amplitude locates at the 

largest attacking angle in the UB regime. In both UB and HB 

regimes, it is generally true that the maximum Y-amplitude grows 

when α is increased. For the range of Vr when lock-in occurs, it is 

seen that the UB regime widens significantly with the increase of 

α; while on the other hand, the range of Vr over which HB occurs 

maximizes at α = 22.5°, from Vr = 13 to 19.  

While it is not shown here, but the regimes of X-amplitude 

response is similar to that of Y-amplitude with two clear regimes 
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of large amplitude of responses, only for every angle of attack the 

Y-amplitude is much larger than the X-amplitude, which peaks at 

the UB regime at just over 0.5D. For the majority of the cases, 

the large amplitude of responses in x-direction coincides in 

similar Vr with that in the y-direction.  

 

 

Figure 4 Comparison on the vibration amplitudes of a square-cross-

sectional cylinder in steady flow at mr=3 and α = 20° at six selected 
Reynolds number (Re). 

Influence of Re 

Figure 4 compares the vibration amplitudes from 2DoF study at 

mr = 3 at six Reynolds numbers in the range of Re[60, 160]. It 

was found that the HB regime in both directions is highly 

dependent on Re, especially when it is compared to the UB 

regime. It is observed that no HB regime occurs at Re = 60 and 

80, while the range of Vr for HB regime widens greatly with the 

further increase of Re from 100. At Re = 160, the range of Vr for 

regimes of UB and HB in both directions tends to connect 

together and thus the response amplitudes are high in the range of 

Vr = 5 to 23, only with comparatively small amplitude at around 

Vr=10. On the contrary, the Reynolds number has little effect on 

the UB regime. The UB regime occurs at around Vr = 6 and the 

range of Vr of the UB regime in the y-direction is slightly wider 

than that in the x-direction. The range of Vr for HB regime is 

much wider than that of UB regimes at any Re when HB does 

occur, which is especially true for the Y-amplitude response. 

The amplitude responses in the two directions behave slight 

differently. In the UB regime, the maximum X-amplitude 

increases about 60% with the increase of Re, from 0.33 at Re = 

60 to 0.52 at Re = 160, whereas the Y-amplitude only varies in 

the range of 0.52 to 0.64. On the other hand in the HB regime, 

the maximum amplitude seems quite independent from the 

change of Re, which occurs at Vr around 13~16 for both X- and 

Y-amplitude, at 0.52D and 0.77D, respectively.  

The dependence of amplitude response to Re is believed to be 

due to the characteristics of vortex shedding at these Re, where a 

detailed observation on the vibration frequency and flow field is 

thought to be helpful in providing the explanation.  

Influence of Mass ratio 

The mass ratio also plays a significant role in VIV responses of a 

square cylinder, as that for a circular cylinder. Figure 5 illustrates 

the boundary of reduced velocities, within which (shaded areas) 

the UB and HB regimes are observed for a range of mass ratios at 

fixed Re=100 and α = 20°, along with the maximum amplitude of 

response in each regime.  

 

 

Figure 5 The variations of Upper branch (UB) and high branch (HB) 

amplitude responses of a square cylinder in steady flow at Re=100 and α 

= 20°.  

It is observed the HB regime dominates light square cylinder, 

with much wider range of Vr for mr < 1, where only a single case 

of UB is observed in a Vr resolution of 1. Similar to that of a 

circular cylinder, there seems to be a critical value of mr, lower 

than which an unbounded (with regard to Vr) HB synchronization 

regime occurs. This critical value falls smaller than mr = 1, which 

is 0.54 for a circular cylinder [14]. The area of HB regimes 

shrinks greatly with increase of mr over mr ≥ 2, while that for the 

UB sees much less change. From mr = 10 onwards, the range of 

Vr of UB regime overtakes that of HB regime and at mr = 30, 

only a single case of HB regime is observed. 

For the maximum amplitude of response, it behaves quite 

differently in the two regimes. In the UB regime, both X- and Y-

amplitude experience a steady, 40% drop with the increase of mr 

from 0.1 to 30. However, the amplitudes in the HB regime 

increase slightly before a more than 90% plunge in the same 

range of mr. At both end of investigated mr in the present paper, 

the amplitude of response in HB regime is actually smaller than 

that in UB regime, in contrast to those discussed above and in 

published studies [11, 15], This demonstrates that the amplitude 

in the HB regime does not necessarily Higher than the amplitude 

in the UB regime.  

Influence of number of the DoF 

It is observed that the large amplitude of HB regime totally 

disappears in the laminar regime when the square cylinder is only 

allowed to move in the transverse direction (1DoF). This is 
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distinctly different from what was observed in high Re 

experimental studies [11, 15].  

 

 

Figure 6 Comparison on the vibration amplitudes of a square-cross-

sectional cylinder in steady flow at Re=100 and 160 with mr = 3 and α = 
20°.  

Both 1DoF and 2DoF studies were carried out in the range of Re 

= 100 ~ 160. Figure 6 shows the comparison between the Y-

amplitude responses from 1DoF and 2DoF simulations. For the 

UB regime, only a slight change in Y-amplitude is observed in 

the simulations, while the range of Vr of UB regime sees even 

less dependency.This is similar to the studies on a circular 

cylinder that the number of DoF does not bring much influence 

on the amplitude response.  

Surprisingly, no HB is observed when the square cylinder is 

restricted to move in the y-direction in the laminar regime, while 

the HB regime has been observed in 1DoF experimental study at 

Re ~ O(103 ~ 104). This comparison suggests that in 1DoF VIV, 

the HB can only occur for Re larger than a critical Re, which is 

apparently larger than 160. 

Conclusions 

Vortex-induced vibrations (VIV) of a square cross-section 

cylinder in steady current in the laminar regime was numerically 

studied. The amplitude responses are presented with a wide range 

of controlling parameters.  

1. A new branch of high amplitude of responses (HB) is 

confirmed in the laminar regime;  

2. This new branch is found to be dependent on several 

controlling parameters, including direction of the flow 

with regard to the arrangement of the square cylinder, 

the Reynolds number (Re), the mass of the cylinder as 

compared to the fluid, as well as the numbers of 

degree-of-freedom. Generally, light cylinder with low 

mass ratio and high Re encourage the generation of HB.  

3. This new branch only occur when Re is greater than a 

critical value and only in the situation of two-degree-

of-freedom in the laminar regime. When HB regime 

does occur, the range of reduced velocity for HB 

regime also depends greatly on a number of parameters. 
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